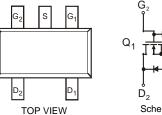


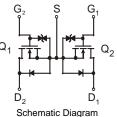
DMN32D2LDF

COMMON SOURCE DUAL N-CHANNEL ENHANCEMENT MODE FIELD EFFECT TRANSISTOR

Features

- Common Source Dual N-Channel MOSFET
- Low On-Resistance
- Very Low Gate Threshold Voltage, 1.2V max
- Low Input Capacitance
- Fast Switching Speed
- Low Input/Output Leakage
- Small Surface Mount Package
- ESD Protected Gate
- Lead Free By Design/RoHS Compliant (Note 2)
- "Green" Device (Note 3)
- Qualified to AEC-Q 101 Standards for High Reliability





SOT-353

Mechanical Data

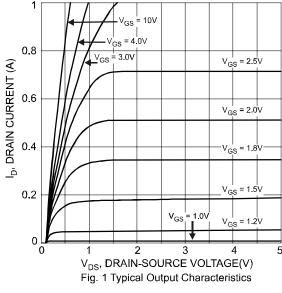
- Case: SOT-353
- Case Material: Molded Plastic, "Green" Molding Compound. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020C
- Terminal Connections: See Diagram
- Terminals: Finish Matte Tin annealed over Alloy 42 leadframe. Solderable per MIL-STD-202, Method 208
- Marking Information: See Page 3
- Ordering Information: See Page 3
- Weight: 0.006 grams (approximate)

Maximum Ratings Q_1 , Q_2 @T_A = 25°C unless otherwise specified

Characteristic	Symbol	Value	Unit	
Drain Source Voltage	V_{DSS}	30	V	
Gate-Source Voltage	V_{GSS}	±10	V	
Drain Current (Note 1)	I_{D}	400	mA	

Thermal Characteristics Q₁, Q₂ @T_A = 25°C unless otherwise specified

Total Power Dissipation (Note 1)	P _D	280	mW
Thermal Resistance, Junction to Ambient (Note 1)	$R_{ hetaJA}$	446	°C/W
Operating and Storage Temperature Range	T_j,T_STG	-55 to +150	°C


Electrical Characteristics Q_1 , Q_2 @ $T_A = 25$ °C unless otherwise specified

Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition	
OFF CHARACTERISTICS (Note 4)		'					
Drain-Source Breakdown Voltage		BV _{DSS}	30	_	_	V	$V_{GS} = 0V, I_D = 250\mu A$
Zero Gate Voltage Drain Current	@ T _C = 25°C	I _{DSS}	_		1	μА	$V_{DS} = 30V, V_{GS} = 0V$
Gate-Body Leakage			_	_	±10 ±1	μΑ	$V_{GS} = \pm 10V, V_{DS} = 0V$ $V_{GS} = \pm 5V, V_{DS} = 0V$
ON CHARACTERISTICS (Note 4)							
Gate Threshold Voltage		V _{GS(th)}	0.6	_	1.2	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$
			_	_ _	2.2	Ω	$V_{GS} = 1.8V, I_D = 20mA$
Static Drain-Source On-Resistance		R _{DS} (ON)	_	_	1.5		$V_{GS} = 2.5V, I_D = 20mA$
			_	_	1.2		$V_{GS} = 4.0V, I_D = 100mA$
Forward Transconductance			100	_	_	mS	$V_{DS} = 10V, I_D = 0.1A$
Source-Drain Diode Forward Voltage			0.5	_	1.4	V	$V_{GS} = 0V, I_{S} = 115mA$
DYNAMIC CHARACTERISTICS							
Input Capacitance			_	39	_	pF)/ O)/)/ O)/
Output Capacitance			_	10	_	pF	$V_{DS} = 3V, V_{GS} = 0V$ f = 1.0MHz
Reverse Transfer Capacitance				3.6	_	pF	71 - 1.0141112
Switching Time	Turn-on Time	t _{on}	_	11	_	nS	$V_{DD} = 5V, I_D = 10 \text{ mA},$
Switching Time	Turn-off Time	t _{off}	_	51	_	nS	$V_{GS} = 0-5V$

Notes: 1. Device mounted on FR-4 PCB, 1 inch x 0.85 inch x 0.062 inch; pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.

- 2. No purposefully added lead.
- 3. Diodes Inc.'s "Green" policy can be found on our website at http://www.diodes.com/products/lead_free/index.php.
 - . Short duration pulse test used to minimize self-heating effect.

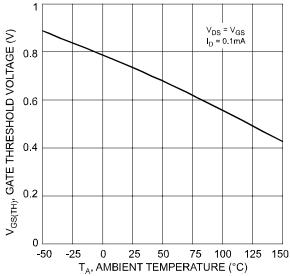


Fig. 3 Gate Threshold Voltage vs. Ambient Temperature

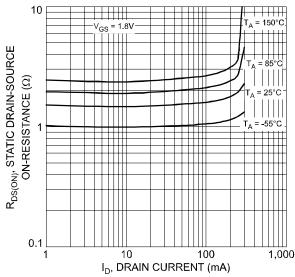
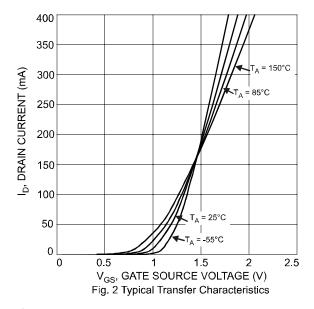



Fig. 5 Static Drain-Source On-Resistance vs. Drain Current

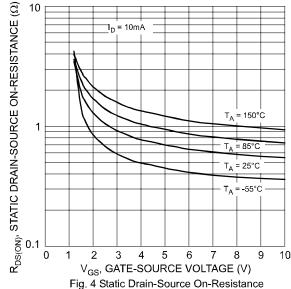


Fig. 4 Static Drain-Source On-Resistance vs. Gate-Source Voltage

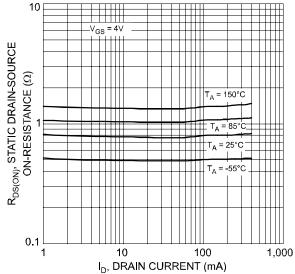


Fig. 6 Static Drain-Source On-Resistance vs. Drain Current

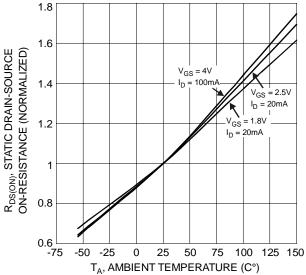


Fig. 7 Normalized Static Drain-Source On-Resistance vs. Ambient Temperature

Fig. 9 Forward Transfer Admittance vs. Drain Current

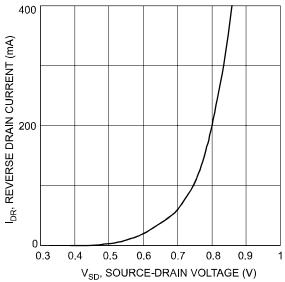
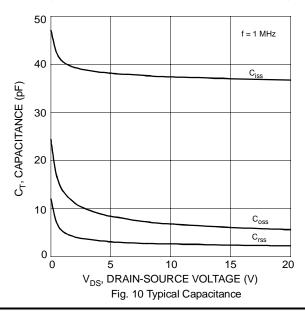
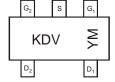



Fig. 8 Reverse Drain Current vs. Source-Drain Voltage



Ordering Information (Note 5)

Part Number	Case	Packaging
DMN32D2LDF-7	SOT-353	3000/Tape & Reel

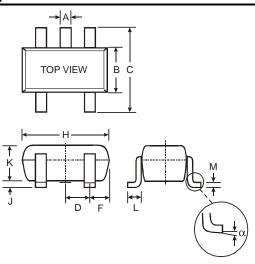
Notes: 5. For packaging details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

Marking Information (Note 6)

KDV = Product Type Marking Code (See Note 6) YM = Date Code Marking

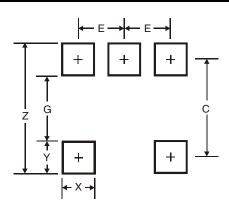
YM = Date Code Marking Y = Year ex: U = 2007

M = Month ex: 9 = September


Notes: 6. Package is non-polarized. Parts may be on reel in orientation illustrated, 180° rotated, or mixed (both ways).

Date Code Key

Year	20	07	20	08	20	09	20	10	20	11	20	12
Code	l	J	\	/	٧	V	>	<	`	′	2	7
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Code	1	2	3	4	5	6	7	8	9	0	N	D



Package Outline Dimensions

	SOT-353					
Dim	Min	Max				
Α	0.10	0.30				
В	1.15	1.35				
С	2.00	2.20				
D	0.65 Nominal					
F	0.30	0.40				
Н	1.80	2.20				
J	_	0.10				
K	0.90	1.00				
L	0.25	0.40				
М	0.10	0.25				
α	0°	8°				
All Di	All Dimensions in mm					

Suggested Pad Layout

Dimensions	Value (in mm)
Z	2.5
G	1.3
Х	0.42
Υ	0.6
С	1.9
Е	0.65

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.